Analysis of SVM regression bounds for variable ranking
نویسنده
چکیده
This paper addresses the problem of variable ranking for Support Vector Regression. The relevance criteria that we proposed are based on leave-one-out bounds and some variants and for these criteria we have compared different search space algorithms: recursive feature elimination and scaling factors optimization based on gradient descent. All these algorithms have been compared on some toy problems and real-world QSAR datasets. Results showed that the span estimate criterion optimized through gradient descent yields improved error rate with fewer variables. An interesting alternative criterion when the number of variables is very large can be a criterion based only on the Lagrangian multipliers of the Support Vector Regression problem.
منابع مشابه
Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets
Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set. If we have fuzzy observations, using ordinal regression methods can't model them; In this case, using fuzzy regression is a good method. When observations are fuzzy and there are outliers in the data sets, using robust fuzzy regression methods are appropriate alternatives....
متن کاملEfficiency Evaluation and Ranking DMUs in the Presence of Interval Data with Stochastic Bounds
On account of the existence of uncertainty, DEA occasionally faces the situation of imprecise data, especially when a set of DMUs include missing data, ordinal data, interval data, stochastic data, or fuzzy data. Therefore, how to evaluate the efficiency of a set of DMUs in interval environments is a problem worth studying. In this paper, we discussed the new method for evaluation and ranking i...
متن کاملSVM Tutorial - Classification, Regression and Ranking
Support Vector Machines(SVMs) have been extensively researched in the data mining and machine learning communities for the last decade and actively applied to applications in various domains. SVMs are typically used for learning classification, regression, or ranking functions, for which they are called classifying SVM, support vector regression (SVR), or ranking SVM (or RankSVM) respectively. ...
متن کاملAutomatically Ranking Reviews Based on the Ordinal Regression Model
With the rapid development of Internet and E-commerce, the quantity of product reviews on the web grows very fast, but the review quality is inconsistent. This paper addresses the problem of automatically ranking reviews. A specification for judging the reviews quality is first defined and thus ranking review is formalized as ordinal regression problem. In this paper, we employ Ranking SVM as t...
متن کاملSupport vector methods for survival analysis: a comparison between ranking and regression approaches
OBJECTIVE To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. METHODS The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 70 شماره
صفحات -
تاریخ انتشار 2007